Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Antimicrob Chemother ; 78(6): 1454-1459, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2290752

ABSTRACT

OBJECTIVES: We aimed to describe the clinical outcomes and duration of viral shedding in high-risk patients with haematological malignancies hospitalized with COVID-19 during Omicron variant predominance who received early treatment with antivirals. METHODS: We conducted a prospective observational study on high-risk haematological patients admitted in our hospital between December 2021 and March 2022. We performed detection techniques on viral subgenomic mRNAs until negative results were obtained to document active, prolonged viral replication. RESULTS: This analysis included 60 consecutive adults with high-risk haematological malignancies and COVID-19. All of these patients underwent early treatment with remdesivir. Thirty-two (53%) patients received combined antiviral strategies, with sotrovimab or hyperimmune plasma being added to remdesivir. The median length of viral replication-as measured by real-time RT-PCR and/or subgenomic RNA detection-was 20 (IQR 14-28) days. Prolonged viral replication (6 weeks after diagnosis) was documented in six (10%) patients. Only two patients had prolonged infection for more than 2 months. Overall mortality was 5%, whereas COVID-19-related mortality was 0%. CONCLUSIONS: Current outcomes of high-risk patients with haematological malignancies hospitalized with COVID-19 during Omicron variant predminance are good with the use of early antiviral strategies. Persistent viral shedding is uncommon.


Subject(s)
COVID-19 , Dermatologic Agents , Hematologic Neoplasms , Adult , Humans , Antiviral Agents/therapeutic use , SARS-CoV-2 , Hematologic Neoplasms/complications , Hematologic Neoplasms/drug therapy
3.
Front Immunol ; 11: 573179, 2020.
Article in English | MEDLINE | ID: covidwho-909162

ABSTRACT

The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has generated a significant repercussion on the administration of adoptive cell therapies, including chimeric antigen receptor (CAR) T-cells. The closing of borders, the reduction of people transit and the confinement of the population has affected the supply chains of these life-saving medical products. The aim of this mini-review is to focus on how the COVID-19 pandemic has affected CAR T-cell therapy and taking into consideration the differences between the large-scale centralized productions for the pharmaceutical industry versus product manufacturing in the academic/hospital environment. We also review different aspects of CAR T-cell therapy and our managerial experience of patient selection, resource prioritization and some practical aspects to consider for safe administration. Although hospitals have been forced to change their usual workflows to cope with the saturation of health services by hospitalized patients, we recommend centers to continue offering this potentially curative treatment for patients with relapsed/refractory hematologic malignancies. Consequently, we propose appropriate selection criteria, early intervention to attenuate neurotoxicity or cytokine release syndrome with tocilizumab and prophylactic/preventive strategies to prevent infection. These considerations may apply to other emerging adoptive cell treatments and the corresponding manufacturing processes.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Immunotherapy, Adoptive/methods , Point-of-Care Systems , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, CD19/immunology , COVID-19/virology , Cytokine Release Syndrome/drug therapy , Health Services Accessibility , Health Workforce , Hematologic Neoplasms/therapy , Humans , Patient Selection , Triage
SELECTION OF CITATIONS
SEARCH DETAIL